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INTRODUCTION 

 
0 (zero; BrE: /ˈzɪərəʊ/ or AmE: /ˈziːroʊ/) is both a number[1] and the numerical digit used to 

represent that number in numerals. It fulfils a central role in mathematics as the additive identity of 

the integers, real numbers, and many other algebraic structures. As a digit, 0 is used as a placeholder 

in place   value    systems.    In    the English    language,    0    may    be    called zero,nought or 

(US) naught (pron.: /ˈnɔːt/), nil, or — in contexts where at least one adjacent digit distinguishes it 

from    the    letter    "O" — oh or o (pron.: /ˈoʊ/).    Informal    or    slang    terms    for     zero 

include zilch and zip. Ought or aught (pron.: /ˈɔːt/) has also been used historically. 

 

REVIEW OF LITERATURE 
 

Georg Cantor (1845 - 1918) was a student of Dedekind and inherited from him the problem of 

establishing the class of functions which has a converging Fourier series. Following his teacher, he 

began to study families of functions having convergence Fourier series as classified by their 

exceptional points. That is, following even the first ideas of convergence, Cantor expanded the 

number of exceptional points a function may have and still have a converging Fourier series — 

except at those points. His first attempt in 1872 allowed for an infinite number of exceptional points 

answering a question of Riemann. 

Here are the details. Given an infinite set of points 6. Define the derived of 6 ,6₃, to be the set of 

limit points of 6. Define 6₃₃ to be the derived set of 6₃, also called the second derived set of 6, and 

so on. Cantor was able to show that if the trigonometric series converges to zero except at a set of 

points which has a finite NWK derived set, for some (finite) N, then DQ EQ ₃₃ Q ₃₃ ₃₃ ₃ ₃ ₃. In this 

paper he also showed the existence of such sets for every Q. 

₃ 

₃ ; DQ FRV Q[ ₃ EQ VLQ Q[ 

Q ₃ 

Cantor most certainly was aware that the process of derivations could be carried out indefinitely. 
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Use the notation 6₃Q₃ to be the QWK derived set of 6. Then 6₃Q₃₃₃ ₃6₃Q₃₃₃, the derived set of 6Q. 

Defining in this way 6₃₃₃ to be those points in 6₃Q₃ for every finite Q, we can continue to apply the 

derive operation. Thus, we get the following sets of points: 

₃ ₃ ₃ ₃T 
 

₃₃₃₃ 6₃₃₃₃₃ ₃ ₃ 

6₃ 6₃ ₃₃ 6₃ ₃₃ 

6₃    ₃₃₃₃ ₃ ₃ ₃ 6₃ ₃₃₃ ₃ ₃ 

₃ ₃ 
 

 
 

₃T ₃ 

 

6₃  ₃₃₃ ₃ ₃ ₃ ₃6₃ 

₃ ₃ 

₃ 

₃₃ ₃ ₃ ₃ ₃ 

6₃ ₃₃ ₃ ₃ ₃ 
 

The number ₃ appears naturally in this context. So also do numbers 

₃ ₃ ₃₃ ₃ ₃ ₃ and so on. The root of these infinite numbers was the attempt to solve a problem of 

analysis. 

However, Cantor now devoted his time to the set theoretic aspects of his new endeavor, 

abandoning somewhat the underlying Fourier series problems. He first devoted his time to 

distinguishing the sets of rationals and reals. In 1874, he established that the set of algebraic 

numbers₃ can be put into one-to-one correspondence with the natural numbers. ₃ but the set of real 

numbers cannot be put into such a correspondence. We show the simpler 

Theorem. The set of rationals is one-to-one correspondence with the natural numbers. 
 

Proof #1. Let UP₃Q P be a rational number represented in reduced 
 

Q 

form. Define the relation 
 

UP₃Q ₃ ₃P ₃Q
 

This gives the correspondence of the rationals to a subset of the natural numbers, and hence to the 

natural numbers. 
 

Proof #2. ₃ (Arrange all the rationals in a table as shown below. Now count the numbers as shown 

by the arrows. This puts the rationals into correspondence with the natural numbers. As you may 

note, there is some duplication of the rationals. So, to finish, simply remove the duplicates. 

Alternatively, build the table with the rationals already in lowest order. 
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1/4 

, 

3/4 5/4 , 

, , 4/4 , ... 

3 /5 5/5 , 

1 , 2 /5 , , 4/ 5 , ... 

 
 

 5 , 

1 ,  4 , ... 

 
1 , 2 

  
, 

5 /2 

, ,... 

   

5/3 , 

1 /3 , , 4/3 , ... 
 

 

 

The proof for algebraic numbers is only slightly more complicated. 
 

The proof of the other result, that the real numbers cannot be put into such a correspondence invoked 

a new and clever argument. Called Cantor’s diagonal method, it has been successfully applied to 

many ends. 

Theorem. The set of reals cannot be put into one-to-one correspon-dence with the natural numbers. 
 

First Proof. We give here the 1891 proof. Restrict to the subset of reals in the interval ₃₃₃ ₃₃. 

Supposing they are denumerable as the set IDQJ₃Q ₃, we write their decimal expansions as follows: 

₃ ₃ G₃₃₃ G₃₃₃ G₃₃₃ 

D₃ ₃₃ ₃ 

₃ ₃ G₃₃₃ G₃₃₃ G₃₃₃ 

D₃ ₃₃ ₃ 

₃ ₃ G₃₃₃ G₃₃₃ G₃₃₃ 

D₃ ₃₃ ₃ 

. 
 

. 
 

. 
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where the G’s are digits 0 - 9.  Now define the number 

 

D ₃ ₃ G₃ G₃ G₃ ₃ ₃ ₃ 

by selecting G₃ ₃ G₃₃₃₃ G₃ ₃ G₃₃₃₃ G₃ ₃ G₃₃₃₃ ₃ ₃ ₃ ₃ This gives a number not 

in the set IDQJ₃,  and  the  result  is proved. 

Q ₃ 

Second Proof. This proof, which appeared in 1874, is not as well known. We show that for any 

sequence Y₃₃ Y₃₃ ₃₃ ₃ of reals there is a number that is not in the sequence in any interval of real 

numbers ₃D₃ E₃. First, let D₃ and E₃ be the first members of the sequence in ₃D₃ E₃ with D₃ ₃ E₃. 

Let D₃ and E₃ be the first members of the sequence in ₃D₃₃ E₃₃ with D₃ ₃ E₃, and so on. Thus, D₃₃ 

D₃₃ ₃ ₃ ₃ is an increasing sequence, and E₃₃ E₃₃ ₃ ₃₃ is a decreasing sequence. There are three cases. 

If the sequences are finite, then any number inside the last chosen interval satisfies the requirement. 

Suppose now the sequences are infinite and they converge to limits, D₃ and E₃, respectively. If they 

are equal, then this value satisfies the requirement. If not, any value in the open interval ₃D₃₃ E₃₃ 

does so. 
 

Seeking undenumerable sets, Cantor considered topological notions for 
 

his derived sets. We say a set 6 Ÿ ₃D₃ E₃ is dense if 

6₃ 

₃D₃ E₃. 

We 

say 6 is closed if 6₃? 6 6₃. We say 6 is isolated if 6₃ ₃. Finally, 

we say 6 is perfect if 6₃ 6. Remarkably, Cantor showed that perfect 

sets must be uncountable. One of the most famous perfect sets is so-called the middle thirds set 

defined as the residual of the open interval 

₃₃₃ ₃₃ by first removing the middle third (i.e., ₃ ₃ 

₃ 

₃ ₃ 

₃ ₃). Next remove 

the 

 

middle thirds of the two subintervals remaining and the middle thirds of the four remaining 

subintervals after that, and so on. This set is one of the first examples of an uncountable Lebesgue 

measurable set of measure zero that mathematics graduate students learn.
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At this point he was in possession of two orders of infinity, countable and uncountable infinity. Being 

unable to determine an infinity in be-tween, he gave a proof that every set of points on the line could 

be put in one-to-one correspondence with either the natural numbers or reals. His proof was incorrect, 

but his quest is known today and is called the continuum hypothesis. The problem is open today and 

is complicated. In 1938, Kurt Godel¨ proved that the continuum hypothesis cannot be disproved on 

the basis of the set-theoretic principles we accept today. Moreover, in 1963, Paul Cohen established 

that it cannot be proved within these principles. This means that the continuum is undecidable. 

Cantor was not without detractors. Though his methods were enthusi-astically received by some 

mathematicians, his former teacher Leopold Kronecker believed that all of mathematics should be 

based on the natural numbers. This may be called finitism. He also believed that mathematics should 

be constructed, and this is called constructivism. He soundly rejected Cantor’s new methods, 

privately and publicly. As a journal editor, Kronecker may have delayed the publication of Cantor’s 

work. 

By 1879 Cantor was in possession of powers of infinity, defining two sets to be of the same power 

if they can be placed into one-to-one correspondence. Using his diagonalization method, he was able 

to demonstrate orders or powers of infinity of every order. Here is how to exhibit a set of higher 

power than that of the reals. Let) be the set of real-valued functions defined on the reals. Assume 

that this class of functions has the same power as the reals. Then they can be counted as I\₃[₃, where 

both [ and \ range over the reals. Define a new function I ₃[₃ such that 

I ₃[₃ ₃ I[₃[₃ 

for each real [. This function cannot be in the original set). In turn, this method can be applied 

recursively to obtain higher and higher powers of infinity. There is another connection with subsets 

of sets. Indeed, in the argument above the subset of) consisting of functions assuming only the 

values 0 and 1 could have been used. In such a way it is possible to see that we are looking at the set 

of all subsets of the reals. A subset corresponding to a particular function is the set of values for 

which it has the value 1. Conversely, any subset generates a function according to the same rule. 

In all this, infinity is now a number in its own right, though it is linked with counting ideas and 

relations to sets of sets. The term power gave us the expression power set or set of subsets of a given 

set. For a finite set with Q elements, the set of all subsets has size ₃Q. However, the power of a set is 

an attribute of a set akin to the cardinality of a set. Two sets have the same power if they can be put 

in one-to-one correspondence. 

In about 1882, Cantor introduced a new infinity, distinguishing car-dinality from order, cardinal 
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numbers from ordinal numbers. (i.e., one, two three from first, second, third). He would say that 

₃D₃₃ D₃₃ ₃ ₃ ₃₃ and ₃E₃₃ E₃₃ ₃ ₃ ₃ ₃ E₃₃ have the same cardinality or power, but their order is 

different. The first has order ₃ while the second has order ₃ ₃ ₃. For finite sets, there is only one order 

that can be given, even though elements can be transposed. Therefore, ordinal and cardinal numbers 

can be identified. 

Using a method similar to the second proof above, Cantor showed how to produce a set with power 

greater than the natural numbers, namely, the set of all ordinal numbers of the power of the natural 

numbers. From this, he went on to construct the power set of the set of ordinals, and so on generating 

higher and higher powers. Now, to make contact with the power of the real numbers, Cantor made 

the assumption that the reals were well-ordered, which is defined below. From this, he established 

that the power (cardinality) of the real numbers is less than, equal to or greater than each of the new 

powers, but not which of them it is. 

Notation: By 1895 Cantor defined cardinal exponentiation. Using the term #₃ (aleph-null) to denote 

the cardinality of the natural numbers, he defined ₃₃₃ for the cardinality of the reals. With #₃ (and 

more generally #₃ denoting the ₃ WK cardinal) the next larger cardinal than 

#₃ ,  the continuum  hypothesis is  written as  ₃  ₃  ₃ #₃ . 

 

 
Cantor and others produced similar examples of a special category of nowhere-dense sets as an 

application arose of these ideas. First, a nowhere dense set 6 is a set for which the complement of its 

closure 

is dense, i.e. a6› is dense.   The set of binary fractions I ₃   J₃   and 
 

₃ 3 ₃ 

the Cantor middle thirds set are nowhere dense, but the rationals are dense. The special new category 

consists of those that are “fat” in the following way: Every finite covering of the set by intervals 

should have total length greater than some given number, say 1. It becomes natural to say that such 

sets have content, and the content of the particular nowhere dense set under consideration is the 

infimum of the total length of all finite coverings. The idea of content was to play a major role in the 

development of the modern integral, notably the Jordan completion to the Riemann-Cauchy integral 

and ultimately the Lebesgue integral. So, we see here, sets and infinity now giving rise to new ideas 

for analysis. And note that the Fourier series problem that served as the root of these investigations 

would find its ultimate solution within the context of the modern integral. At this point we have 

come full circle. The problem created the solution. In 1873, the French mathematician Paul du Bois 

Reymond (1831 - 1889) discovered a continuous function for which its Fourier series diverged at a 
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single point, solving a long-standing open problem. That this was the tip of the iceberg on 

divergence of Fourier series is illustrated below by three theorems. These results are essentially the 

current best possible pointwise results for Fourier series. We first need the definition: A set (Ÿ 5 is 

said to have measure zero if for every”! ₃ there exists a finite set of intervals,  ₃  ₃,  ₃  ₃ ₃ ₃ 

₃  ₃,  N  on for which 

1. (Ÿ >N ,L 

 
 

L ₃ 

2. 3N M,LM, where for any interval ,,  M,M is the length  of ,. 

L ₃ 

 

(Of course, N and the intervals,  ₃  ₃,  ₃  ₃ ₃ ₃ ₃ ₃,  N  depend on the set ( and on ”.) 
 

CONCLUSION 

In some ways, the paradoxes and overall lack of agreement on basic principles in set theory can be 

seen as parallel to the paradoxes and overall lack of agreement on basic principles in the early days 

of calculus or noneuclidean geometry. Parallel to that, no doubt there were many paradoxes and 

overall lack of agreement of basic principles in the fledgling subject of geometry more than two 

thousand years earlier. It seems that by making various decisions about infinity via its “agents”, the 

axiom of choice and the well ordering axiom, different systems of mathematics result. Therefore, the 

original absolute axiomatic model of Euclidean geometry within which all propositions can be 

resolved and that all of science has tried to emulate, is gone forever. Infinity and these trappings of 

set theory so very much needed to advance the early and modern mathematical theories, has served 

up a second dish, the demise of certainty. 

Will the issues of infinity ever be resolved to the satisfaction of logicians and mathematicians? Like 

the limit, the understanding of which was finally assimilated after two millenia, a working definition 

of infinity satisfactory to all practitioners will probably percolate out. For most of us that point has 

already been achieved. 
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